

Glass decarbonization

Kyle Sword NSG Pilkington

Abstract


 The decarbonization pathway for glass manufacturing will require a multi-faceted approach to achieve the targeted 2050 results for the glass industries. Key to these strategies will be raw material sourcing, circular economy, alternative fuels, and electrification. Hydrogen firing appears to have relatively high chances of success as an alternative fuel, but the path from concept and pilot to full scale commercial adoption is complex and involves a wide variety of external entities so implementation and development will require collaboration and innovation.

It's the end of the world

But there are real issues

IPCC reports implications of global warming of 1.5°C above pre-industrial levels dramatically increase the risk of extreme weather events, more frequent wildfires with higher intensity, sea level rise, and changes in flood and drought patterns with implications for food systems collapse, among other adverse impacts.

But there are real issues

Consumption and generation of power do have impacts and are being measured/metered/regulated/taxed

Product use, building resiliency, code, renewable energy – all have impacts

As a good engineer, I should understand this

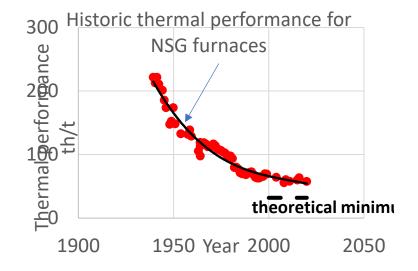
Kyle Sword

- Certified Glass nerd Passion for glass, networking, community, volunteering, the arts.
- Name calling and finger pointing
- Engineer Problem solving
 - Collaboratively define problem
 - Macro limits and assumptions
 - Solving \$1 or \$1B problem
 - Brainstorm
 - Get team alignment, work together
 - List possible solutions, evaluate most attractive options
 - Hypothesis, model, implement
 - PDCA

Agenda

- Macro level Energy consumption
- Decarbonization Where does CO2 come from?
- Solutions How can we help?
 - Process
- Collaborations

TM



TM

Macro – Energy usage

Historic progress

The benefits of glass are evident.
Glass components in all renewable energy.

St Helens, UK 1935

9 Dec 2022

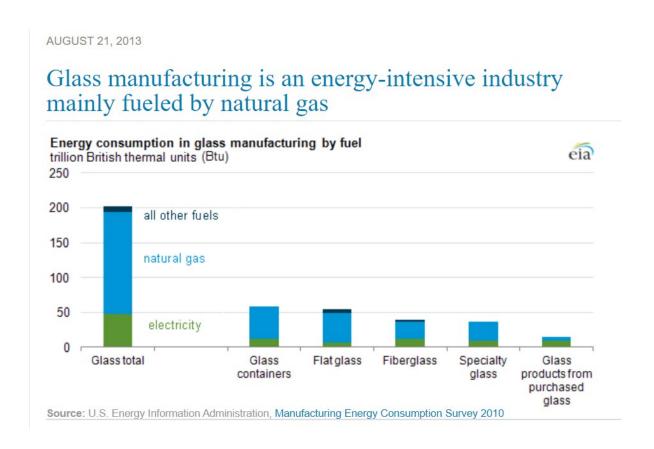
We need a step change

CO2 payback

GROUP

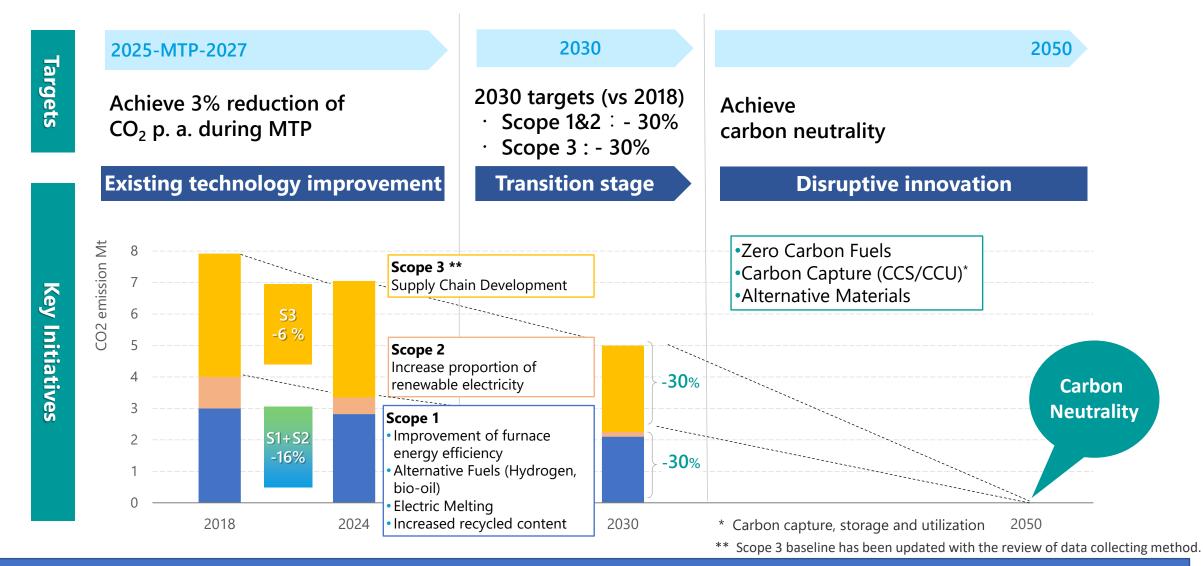
10

- New construction
- Solar panels (renewable energy)
- Building upgrades


Glass Problems Conference 2025

Global warming and CO2

Global CO, Emissions by Sector



US Consumption = 100 Q BTU energy

9 Dec 2022 Glass Problems Conference 2025

Roadmap to Carbon Neutrality for 2050

On track to deliver Scope 1 + 2 targets for 2030. Scope 3 becomes a key focus

June 2025 NSG Group Confidential

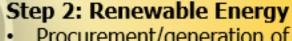
Roadmap

Step 4: Value Chain Engagement

- Understand & reduce scope 3 emissions
- Activities include; data collection, workshops, etc.
- CO₂ reduction by 15 50 % vs 2018 (scope 3)

Step 3: Technology Change

- Development & implementation of new technologies
- CO₂ reduction by 20–70% vs 2018
- Activities include; Low carbon fuels, electrification, alternative materials, Carbon capture, etc.

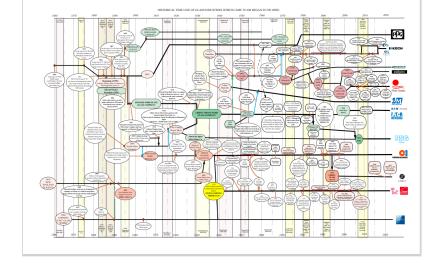

Step 5: Carbon Offsets

 Final step to achieve carbon neutrality

Step 1: Operational Efficiency

- Effective dissemination of energy/CO₂ efficiency measures across all Group operations
- Activities include; infrastructure upgrades, waste glass (cullet) management, etc.
- CO₂ reduction by 5 15 % vs 2018

- Procurement/generation of renewable energy
- Activities include; PPA, on site generation, heat recovery
- CO₂ reduction by 5–15 % vs 2018

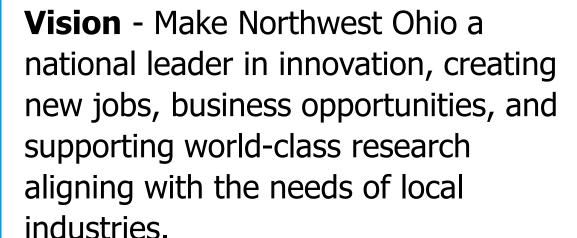


Collaboration

Toledo collaborations

- Going back to Toledo roots
- Collaborate, share, explore <u>lead</u>
- Multiple areas common problems
 - Decarbonization
 - Air/emissions
 - ESG activities
 - DEI activities

Don't compete directly in markets – Why not share?


NOIC — Northwest Ohio Innovation Consortium

NOIC is a 501c6 Non-Profit Consortium

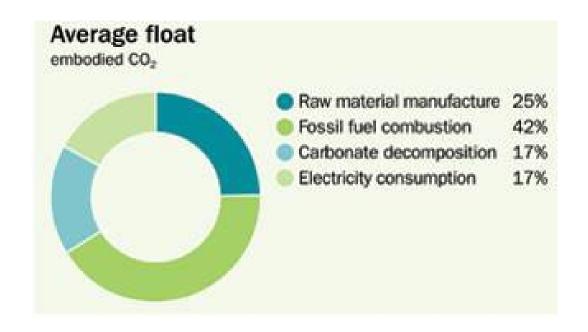
Goal - Establish a Center of

Excellence for Glass in Northwest

Ohio

NOIC - Northwest Ohio Innovation Consortium

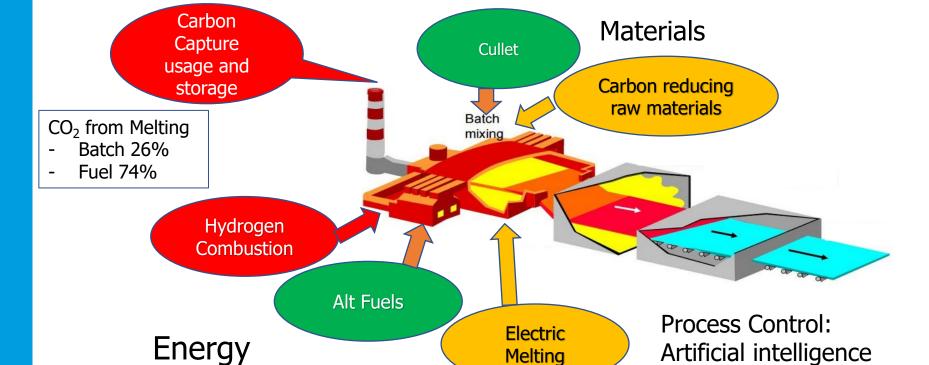
- 1. Talent Development Platform
- 2. Recycling System Optimization
- 3. Process Control AI Optimization
- 4. Melting Technology Performance
- 5. Glass Surface Treatment
- 6. Glass Melting Improvement
- 7. Electrification of Fining & Conditioning



Decarbonization – process

Technology Change - Decarbonization Projects

- Alternative Fuels
 - Includes hydrogen firing
- Carbon Reducing Raw Materials
- CCUS carbon capture
- Cullet for decarbonisation
- Electric Melting



Multiple projects being run, some fully technically proven, others more medium to long-term.

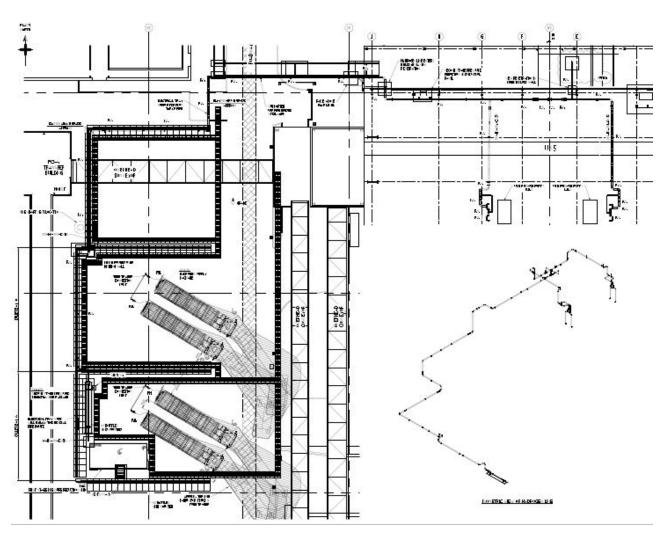
Routes to Low Carbon Melting

Supporters

"Glassmaking" CO2 emissions from two sources – Fuel and Batch.

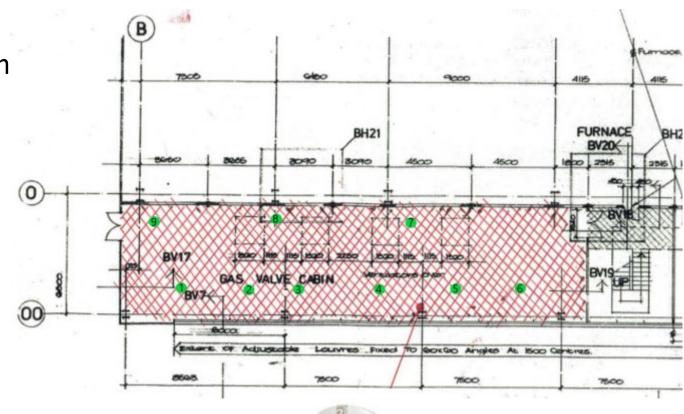
Glass Problems Conference 2025

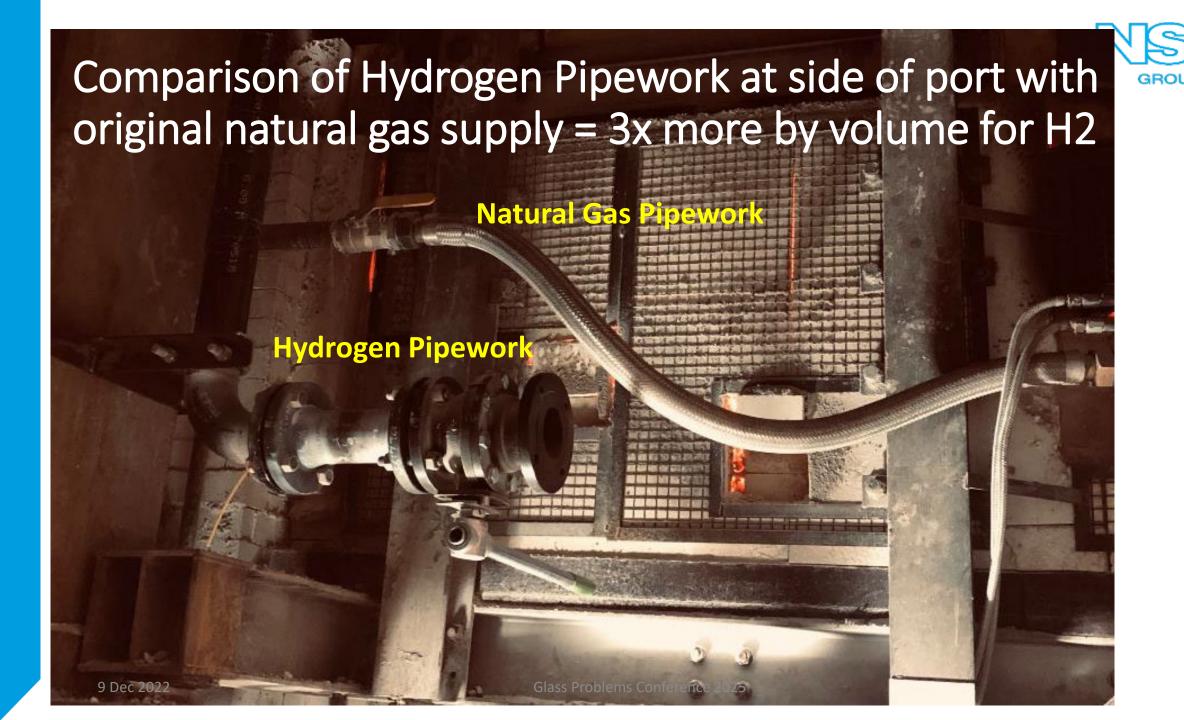
Machine learning



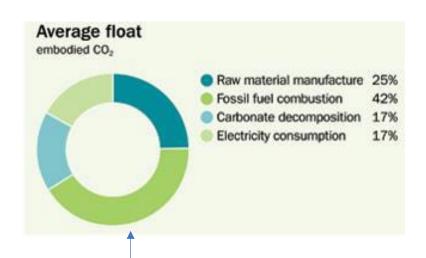
Hydrogen

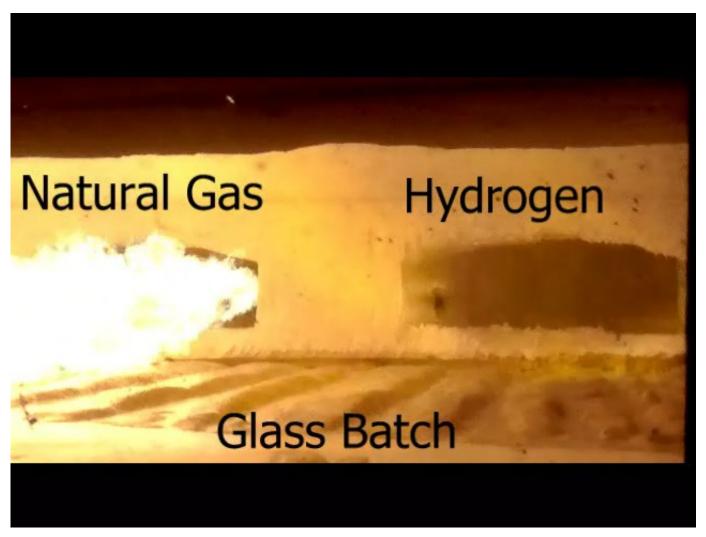
Hazard Studies 1 & 2


- Identifying inherent hazards of dealing with Hydrogen flammability, diffusivity, buoyancy, hydrogen embrittlement
- Identifying potential building, infrastructure, layout and transport issues
- Paying attention to ventilation, hydrogen accumulation at high points, leak detection
- Pinpointing key activities, such as changeover of duty to/from hydrogen and blends and purging
- Agreement of risk tolerability criteria, regulations, standards, codes and guidance


Gas Detection and Fire Risk Assessments

- Fire Risk Assessments conducted
- Ventilation Assessments in furnace room including air flow monitoring
- No accumulation of hydrogen or NG within furnace building unless a very large leak.
- Smoke bomb assessment of air flows in furnace building completed.
- Hot surfaces = auto-ignition
- Gas Cabin has 9 Gas Detectors installed
- Hydrogen Detectors are cross-sensitive to NG
 - Move from 10% LEL to 20% LEL detection
- Welded fittings v. flange
- Energy content by volume





Hydrogen firing

This proportion of CO₂ emission will reduce from use of Hydrogen & biofuel

Gas tube trucks – 5 days firing = 1 year available capacity H2

9 Dec 2022 Glass Problems Conference 2025 25

Hydrogen Firing Modes

100% NG

80% NG:20% H₂ by Volume 92.6% NG:7.4% H₂ by Energy

70% NG:30% H₂ by Volume 87.9% NG:12.1% H₂ by Energy

60% NG:40% H₂ by Volume 82.4% NG:17.6% H₂ by Energy

50% NG:50% H₂ by Volume 75.7% NG:24.3% H₂ by Energy

40% NG:60% H₂ by Volume 67.6% NG:32.4% H₂ by Energy

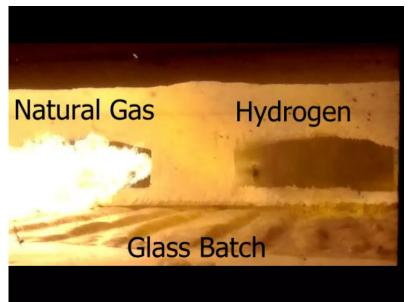
30% NG:70% H₂ by Volume 57.2% NG:42.8% H₂ by Energy

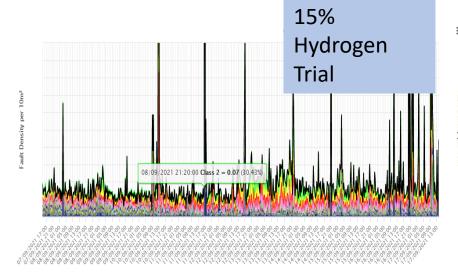
20% NG:80% H_2 by Volume 43.9% NG:56.1% H_2 by Energy

10% NG:90% H₂ by Volume 25.8% NG:74.2% H₂ by Energy

100% H₂

Hydrogen Firing Trials Summary

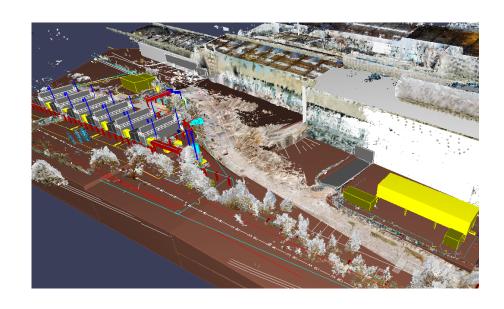

Port 1 Trials


- Successfully fired 100% hydrogen
- Heat transfer, melting performance, emission characteristics (NOx, soda) were measured
- No adverse effect on melting observed
- Viable fuel for melting

Full Furnace Trial

- Successfully fired 15% hydrogen on all ports
- Heat transfer, melting performance, emission characteristics (Nox, soda) were measured
- Glass quality remained stable, no adverse effect on melting operation observed
- Scope for improved performance (burners, nozzles)

Evaluation of on-site Production of Green Hydrogen



Looking at green hydrogen production on site utilizing Proton Exchange Membrane (PEM) Electrolysers at our Greengate Site.

Hydrogen is produced through the usage of green electricity sources.

Annual production hydrogen volumes vary from 58.2-65.7GWh/annum

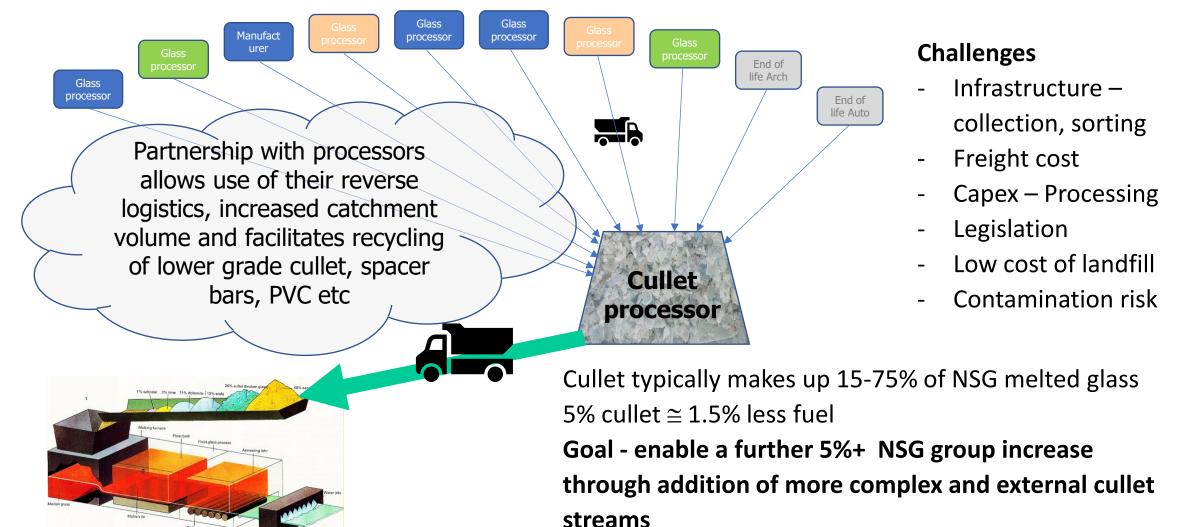
Project is to tie in the hydrogen produced by the electrolysers into Port 1 of NSG's Furnace.

Subsidized project, but long-term contracts, and challenging conditions to progress research.

Hydrogen

- The good news
 - Technical pathway to execute

- The not-so good news
 - Commercial scale production isn't yet available – buy green hydrogen in volume
 - What is available is extremely expensive or reliant on subsidies.
 - On-site generation is more expensive – Not likely
 - Difficult to study –
 Product availability, line
 availability, cost
 - Significant costs to test and/or convert


- To be done
 - Refractory wear of hydrogen firing
 - Forehearth firing of hydrogen
 - Study impact on CO2 and blending
 - Long-term operational impact, refining, quality
 - Burner design

Cullet for decarbonisation

Improving cullet ecosystem in US

Increasing cullet = reduced batch carbon + reduced energy to melt

Cullet Collaborations

- NOIC MRF
- NOIC Blitz
- NGA Ecosystem

Recycling Optimization - MRF Working Team

bjectives: Define cullet baselines in Lucas County, Blend and inspect fines, create cullet steams for solar & flint container, create orting technology specification for new Lucas County MRF, create innovative methods of CSP removal.

Milestones Status

2025-2026

Complete trial of new

Board Advisor: Kyle

- B. Hippert (OI)
 B. Stansley (RS)
- Matt Franchetti (UT)
 J. Riley (LCSWMD)
 M. Kirian (NOIC PM)

Reduce fines going to Expand Fines Inclusion

· Comprehensive Lucas County Waste Stream Materials Audit completed by UT team led by Professor Matt Franchetti

- Kicked off a study to highlight all market-ready sorting and handling technologies for cullet, and their associated costs and value propositions
- Created and updated of a value chain proposition for certain cullet technologies to determine best ROI for certain equipment types for MRF's

- Plan to test samples and test capabilities through the Steinert MSort Operations in Kentucky to create performance data set for project team
- Deploy next round of GRIT collection system in Northwest Ohio and publish white paper on location selection process

- . The team hs set up a research support contract with the University of Toledo team who has PhD's and undergraduate students experienced in consulting for Lucas County SWMD
- The team recently held a comprehensive half day brainstorming around how to influence and support increased glass collection over time for Lucas County and RS

NOIC First Annual Earth Week Glass Recycling Blitz Report

Executive Summary

The Northwest Ohio Innovation Consortium (NOIC) is thrilled to announce the outcomes of the first annual NOIC Earth Week Glass Recycling Blitz Event, held during the week of April 16-22, 2025. The event aimed to increase glass recycling rates and raise awareness about the importance of glass recycling. Key metrics, including baseline tonnage, blitz tonnage, carbon offsets, consumer engagement, and industries served were tracked and analyzed. This report highlights the success of the event and provides insights into future initiatives. The blitz resulted in significant increases in glass recycling tonnage and consumer engagement, contributing to substantial carbon offsets. The recycled glass cullet will be used to support various industries of the Northwest Ohio Innovation Consortium. The quality of the recycled glass upon collection pickup was determined to be extremely clean with a remarkably low % of contamination, continually validating the economic and quality potential of separated glass stream collection.

Earth Week Event Key Performance Metrics

The following table summarizes the key performance metrics of the Earth Week Glass Recycling Blitz Event:

Table 1: Blitz Collection Metrics						
Metric	Value	Description				
Baseline Weekly Tonnage	4,800 Pounds	Average weekly glass recycling amount in Northwest Ohio before the blitz				
Earth Week Blitz Tonnage	6,800 Pounds	Total glass recycling amount collected during the blitz week				
Increase in Tonnage over Baseline	2,000 Pounds	Difference between blitz tonnage and baseline tonnage				
Approximate Carbon Offsets	2,566 Pounds CO2e	Estimated carbon dioxide equivalent emissions avoided due to recycling: equivalent to driving a car from Boston to LA. ¹				
Raw Materials Saved	8,686 Pounds	Total Amount of Raw Materials Saved				

"Greenhouse Gas Emissions from a typical passenger vehicle", EPA, 2025 https://www.epa.gov/greenvehicles/greenhouse-gas-emissions-typical-passenger-vehicle#:~:text-=including %20the % 20calculations ...How %20much % 20tailpipe % 20carbon % 20dioxide % 20(CO2) %20is %20emitted %20from of %20CO2 %20per %20mit

57 PURDUE Environmental and Ecological Engineering

Recycling of Architectural Glass

Erika Salisbury, Jacob Sheets, April Lanka, Marcelo Marcos

Introduction

Recycling of architectural glass during demolition and renovation of buildings is not widespread in the United States yet. Current processes for architectural glass are unsustainable as they keeps waste glass out of the recycling loop. Efficiently recycling glass keeps it out of landflis, which reduces the raw materials and electricity needed to produce glass, and carbon emissions. To increase glass recycling, contractors, architects, and other relevant parties must be aware of their impact or emilent glass recycling and the benefit that recycling architectural glass has on the economy and the glass

The National Glass Association provides resources, advocacy, events, and education to its 1,800 member companies at www.glass.org, with its core purpose disting members in growing their businesses and advocating for policies that support the glass industry.

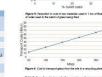
Design Objectives

- (1) improve the architectural glass recycling industri Decrease transport distances, greenhouse gas
- emissions, and costs Prevent contamination in recycled glass Provide education on architectural glass recycling

- Ensure worker safety

- Coer: Necycling glass should cost less than it does currently after design implementation. Accessibility: Design should be written in understandable language that is not overly technical Regulations; Design should comply with safety standards for workers and building regulations.

Inefficiencies in glass recycling stem partly from po-communication between key industry players. To address this, a system was developed to improve architectural glass recycling during commercial bull demolition and retrofitting and tackle other efficiency



Two key recommendations emerge: (1) Conducting pre-bid walkthroughs for glass classification

(2) Establishing intermediate storage locations to reduce transportation costs and energy consumptio

-52.25

We would like to sincerely thank Georgia Scalfano and the National Glass Association for their constructive guidance and support throughout this project. We also extend our gratitude to Margaret Whetton, PE, Xinyiu Zhang, PE, and Ceollia Flores for providing resources and special largeter.

Policy Recommendations

NGA can advocate for policies to support recycling architectural glass at a local and state level:

As the NGA looks to transition its focus to window replacement, the proposed architectural glass recycling framework addresses critical inefficiencies in disassembly, transportation, and industry communication

disassembly, transportation, and industry communication it enhances recycling feasibility, reduces contamination, and lowers transportation costs to create a more sustainable glass industry by minimizing landfill waste and maximizing malerial reuse. Future efforts should focus on policy advocacy and industry collaboration to turther streamline architectural glass recycling and

AD01-25

Overcoming Challenges of Circularity and Architectural Glass Recycling

The National Glass Association's (NGA) FB40-25 Recyclobility of Architectural Glass Products explains the types of glass products that can be recycled, clarifles misconceptions about recycling in the industry, details some of the benefits and value creation from glass recycling, and describes many of the end use products that can be created using cullet.¹ Because of these values, many types of glass industries have described increased cullet use as a key strategy to achievin their 2050 sustainability goals. Despite these values, rates of recycling of all types of glass in the U.S. remain much lower than in Europe and other places in the world. While glasted enclosures allow for daylight and visual connection between spaces, their performance requirements are evolving. Single glasted windows are being replaced by more energy efficient. ones, generating, in the process, volumes of architectural glass typically not recycled in the U.S. On the other hand, leveraging post-consumer materials is one of the simplest ways to decrease the embodied carbon of glass, keeping it a material of choice at the intersection of durability, cost-effectiveness, and sustainability. Expanding circular practices in the field of architectural glass create opportunities to not only strengthen local labor markets, but to enhance the glass

The primary objective of this Technical Paper is to explain many of the challenges currently within the U.S., describe some of the key risks involved with cullet reuse, communicate some of the global activities around cullet reuse, and propose some paths forward that members of the National Glass Association can proactively implement to help move cullet up the value chain and maximize cullet reuse value.

Key drivers supporting the development of increased recycling in North America include

- Economic and environmental value
- Benefits at all levels of supply chain
- Creation of a circular economy and domestic raw material and supply
- Job growth Reduced waste to landfill
- · Reduction in glass furnace emissions
- Class Barrelability Challenger

Glass Problems Conference 2025 9 Dec 2022

Cullet Goal

Understand / build ecosystem around cullet

- Pilot program Improved collection, processing, classification, quantify economic and CO2 impacts within a processing radius.
 - ID pilot model to replicate
 - Involve stake holders in ecosystem

9 Dec 2022 Glass Problems Conference 2025

Other activities

Process AI Optimization

Objectives: Furnace stability and energy reduction per melted ton of 4%, implementation of state-of-the-art sensor systems, development where necessary, implementation of data / knowledge / model reaction based on first principles, recovery from upset optimization, raw material control and optimization

Alignment

Process AI: O-I Toano Furnace Analysis

Team

Board Advisor: Matthew Kirian

M. Kirian (NOIC PM)

J. Bryant (O-I)

J. Peeno (NOIC)

T. Bush (ART)

M. Abouheaf (BGSU)

Metrics

Energy reduction per melted ton of 4%

Predictive color and job change upset control

Updates

Recent achievements

- Project kickoff and data sharing from O-I to Actual Reality Technologies (ART)
- ART performed first two rounds of process and quality data analysis to identify significant indicator tags between process, quality, and energy
- The project team has worked closely with the O-I Toano Team to understand data anomalies, sensing systems, and data naming structure

Upcoming activities

- Continued communication with the O-I Toano team to understand batch and quality controls and operations
- ART's next iteration of statistical significance analysis of process data parameters in conjunction with energy and quality data analysis
- Predictive model feasibility report to identify current predictive capabilities and limitations
- Final strategic report and roadmap with recommendations for additional data required to further optimize model performance, AI/ML implementation and deployment strategy, and next steps

Roadblocks

- Logistics of the payment structure, and O-I's internal vendor and customer creation systems – not stopping work, but using a lot of resource time
- Lack of member agreement required additional agreements to be drafted and is preventing BGSU from participating at this time

Milestones	Status	
Furnace Data Correlation Analysis	May 2025	
Data Prediction of what's Currently Possible	July 2025	
Art of the possible Workshop	October 2025	
Determine Additional Instrumentation needed	Q4 2025	
Install New Sensors	Q1 2026	
Move controls to the edge	Q2 2026	

Additional comments
Toano Plant has two furnaces included in the data sets being analyzed.

The two furnaces have slight tonnage and cullet differences.

Melting Technology Improvement

Alignment

Melting Technology Performance

Team

- D. Imbrogno (NSG)
- J. Strohscher (Libbey)
- J. Schep (O-I Glass)
- M. Menczywor (Owens Corning)
- H. Sojoudi (UT)
- J. Watts (CelSianUSA)
- Z. Islam (BGSU)
- N. Valette (NOIC PM)

OBJECTIVE - Improve efficiency in the glass melting furnace

UPDATES

- Conducted brainstorming sessions and ranked research ideas according to expected impacts and industry needs
- Identified (2) highest priority topics:
 - · Improve burner design
 - Capture & reuse energy from flue gas heat
- Market studies to be conducted
 - Scope of work defined
 - (2) Grad students (UT) over the summer

Milestones	Status
Brainstorming	2025 Q1
Prioritize research topics	Apr-May 2025
Market studies	May-Aug 2025

	Budget
Initial budget	\$ 1,749k
Market studies	\$ 20k

Prioritized research ideas

Tier 1

- Meter geometry optimal ratio length/width/depth
- Energy from flue gas heat capture and reuse
- Burner design
- Improved regenerator refractory - extend asset lifespan
- Advanced refractory maintenance techniques
 Dec 2022

Tier 2

- Optimized meter geometry (spherical, igloo shape, rotating...)
- Burner for hydrogen firing / ammonia
- New melter refractory formulation
- Refractory for hydrogen firing
- Periodic or real time refractory monitoring systems

Tier 3

- Lower product specs (around bubbles etc.)
- Refractory cooling with energy capture & reuse
- Improve insulation properties
- Refractory testing system used at the manufacturer and/or build site.

Tier 1 research ideas ranking

	Innovation Topics	- 0	00	NSG	Libbey	Prelim. Ranking	Impacts
	Burner design	1		2.1	1	1	 Process stability Energy use optimization Environmental
	Energy from flue gas heat capture and reuse	2		1	2	2	Energy use reduction Stability
	Improved regenerator refractory - extend asset lifespan	5		2.2	3	3.1	- Capital cost reduction
	Advanced refractory maintenance techniques	4		3	4	3.2	- Capital cost reduction
re	Melter geometry - optimal ratio 11€18gtਸ਼ੈਮੀਮੀਰਿth/depth	3		4	5	4	 Stability Production capacity increase6 Energy use reduction Quality (defect reduction)

Glass Problems Confere

Summary

- Toledo = Center of Glass excellence and CdTe PV globally.
- Collaboration will drive better results.
- Hydrogen has good potential, but difficult and expensive to progress.
 Need infrastructure at scale.
- Need to understand CO2 creation <u>and</u> savings.
- Lead innovation change, replicate across industry/geography.

Questions?

