
Amber Glass Foam Reduction

JESSE LANG, JOSE MARCIAL, DEREK CUTFORTH, JI-HYE SEO, JAIME GEORGE, JESSE WESTMAN, MEGAN MILLER, WILL EATON

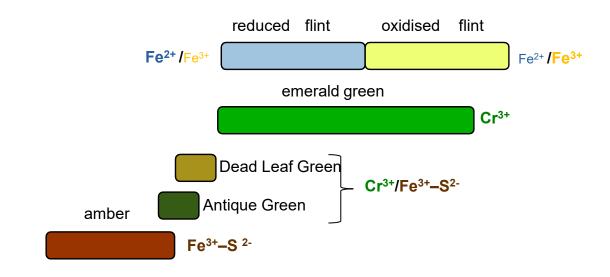
PACIFIC NORTHWEST NATIONAL LAB

INDUSTRY COUNCIL

Amber Glass Foam Reduction

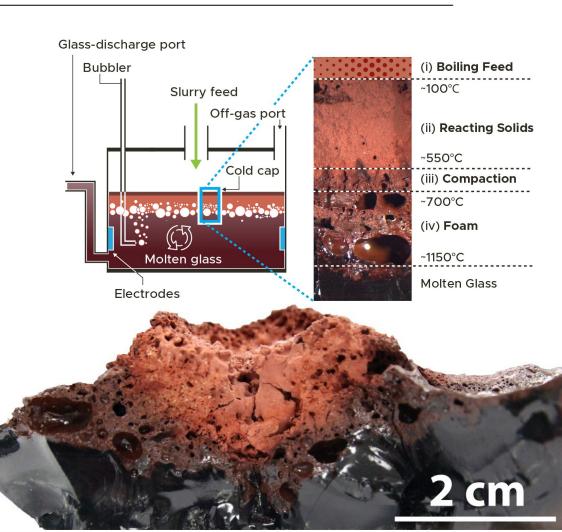
- Approx. 25% of container glass production
- Chromophore:
 - Iron in an oxidized state (Fe³⁺)
 - Sulfur in a reduced oxidation state (S²-)
- $O^{2^{2}}$ Fe^{3+} $O^{2^{2}}$

- Strong UV blocking
- Gases produced during melting → foaming
- Carbon is most common reducing agent
- Test methods:
 - Feed expansion tests (FETs) → compare foaming
 - UV-Vis spectroscopy → confirm chromophore



Redox Range of Commercial Glasses

Batch Redox	Color
0 to +20	White/Colorless
-15 to 0	Green
-25 to -15	Dead Leaf / Antique Green
-30 to -20	Amber



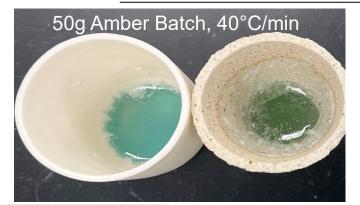
PNNL Glass Vitrification Work

- ➤ Focus on slurry feed (waste + glass formers) → molten glass interactions
- Cold cap studies: minimizing foaming & bubbling
- ➤ 30+ years modeling & testing vitrification at Hanford

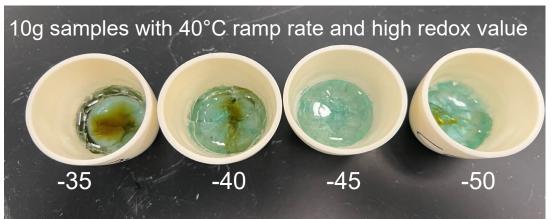
Hanford Melter and Foaming

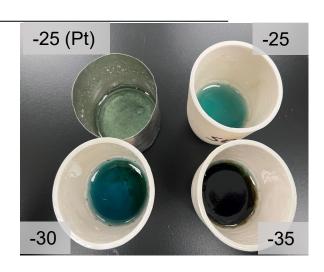
- Hanford wastes (nitrate + organics) → vitrified as oxide glass for isotope immobilization
- Reductants reduce nitrates → control foaming & glass redox
- Carbon-based reductants studied since 1990s: organic acids, sucrose, graphite, etc. 1,2,3
- •Sucrose (Hanford baseline) → high acetonitrile in off-gas⁴
- •Formic acid (DWPF baseline) → flammability risk; replaced by glycolic acid⁵
- •Ceramic reductants for low activity waste (BN, SiC, B₄C, B₆Si, VB₂)^{6,7}

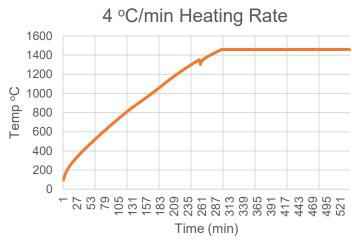
References


- 1. Ryan, J. L. et al., PNL-10510 (1995).
- 2. 2. Seymour, R. G. et al., WHC-SD-WM-SP-008 (1995).
- 3. Seymour, R. G. et al., WHC-SD-WM-SP-009 (1995).
- 4. Matlack, K., and Pegg, I. et al., VSL-19S4573-1, Rev A (2019).
- 5. Choi, A. S. et al., SRNL-STI-2014-00355 (2014).
- 6. Rigby, J. C. et al., Journal of the American Ceramic Society. (2024)
- 7. Rigby, J. C. et al., International Journal of Applied Glass Science. (2025)

Challenges of Amber Glass at Lab Scale

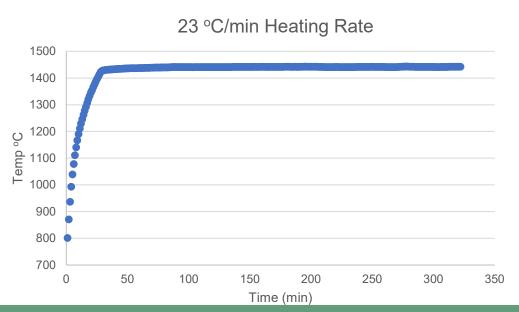

- Batch 1
 Carbon Redox -25


 Batch 3
 Carbon Redox -35


 Batch 2
 Carbon Redox -30

 Batch 4
 Carbon Redox -40
 - 100g Amber batch, 10°C/min

- Lab scale atmospheric furnace conditions
 - Small furnaces used with room atmosphere
- Volume to surface area
 - Smaller batch → more oxidized glass
- Ramp Rate
 - Slow ramp rates → more oxidized glass



5 g batch melted in a N₂ gas tube

furnace

Lab Scale Oxidized State Solutions

- Larger batches to reduce surface to volume ratio
- Faster heating rates to reduce time for batch to interaction with the atmosphere
- ➤ Inert gas for small batches (N₂)

Previous: Amber Glass Reduced with Carbon

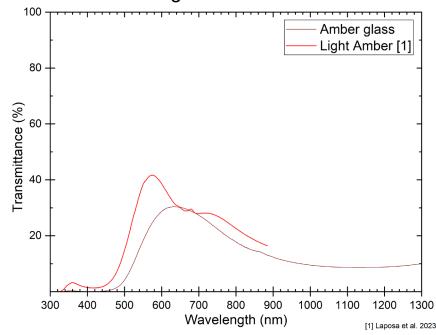


Carbon-reduced batches: sensitive to batch size, heating rate, and atmosphere

Initial Amber Glass Melt

Industrial raw materials (provided by Gallo Glass)

Amber Batch Recipe


- 200 g batch melted in platinum crucible
- Room temperature to 1450 °C at 40 °C/min
- Dwell at 1450 °C for 4 hours

SEM Results

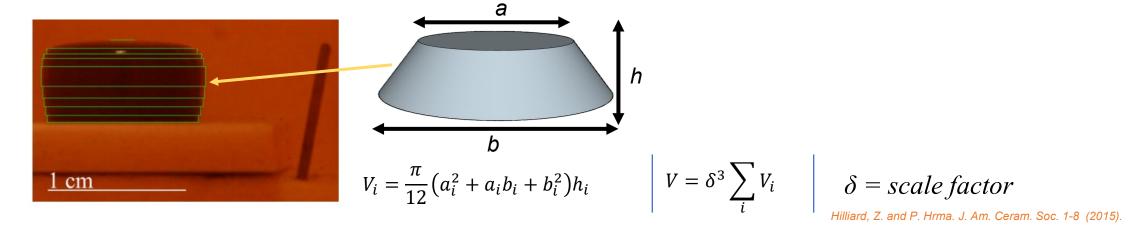
SEM EDS Analysis

5 2 11551			7	
Element	Oxide	Oxide %	Component	Target (%
Si	SiO ₂	72.17	SiO ₂	72.734
Ca	CaO	10.95	CaO	11.35
Mg	MgO	0.7	MgO	0.856
Al	Al_2O_3	1.59	Al_2O_3	1.5
Fe	FeO	0.37	Fe ₂ O ₃	0.44
Ti	TiO ₂	0.02	TiO ₂	0.035
S	SO_3	0.05	SO ₃	0.08
CI	CI	0	CI	0.004
Na	Na ₂ O	13.7	Na ₂ O	12.673
K	K_2O	0.35	K ₂ O	0.327

UV-Vis of amber glass in Pt Melt vs Literature

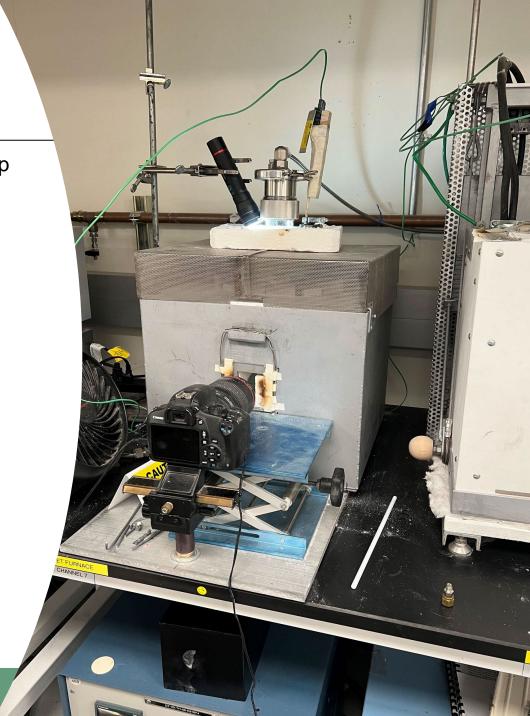
Feed Expansion Test (FET)

- 1 g pressed pellet heated from room temperature at 10 °C/min
- Simple test to observer and measure foaming
- Used to compare different variables effects
- Video recorded of the test


2		200°C	800°C	840°C	860°C	900°C	1000°C
Heating rate	A19-original β = 5 K/min				-	-	1 2 3
	A19-original β = 30 K/min						
Quartz particle size	A19-original ≤ 5 µm						
	A19-original 106 to 250 μm						
Viscosity	A19-1 $\eta = 1.5 \text{ Pa s}$						
	A19-9 $\eta = 9.5 \text{ Pa s}$	in					
Frit vs. GFMC	Feed II GFMC						
	Feed II Frit						

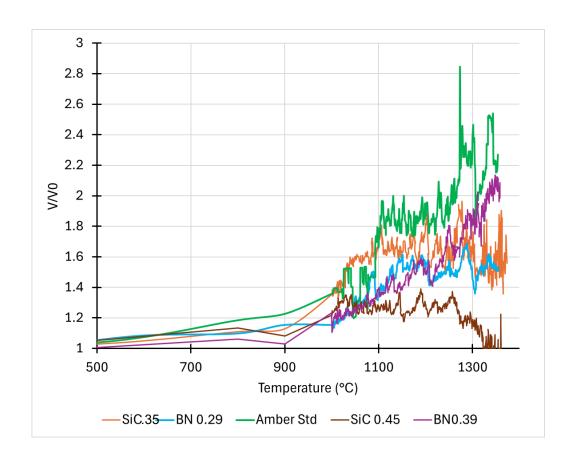
Feed expansion test (FET) volumetric expansion

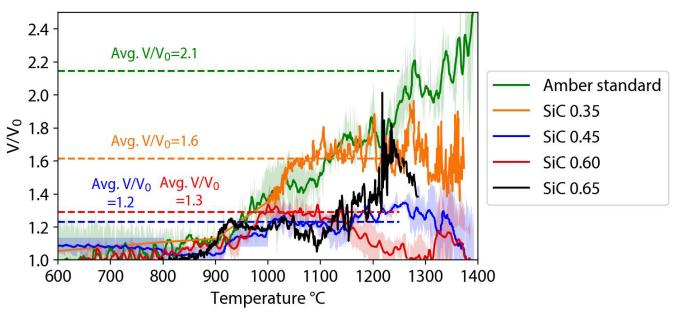
- Using pellets allows for easy calculation of volume and porosity
 - Assume that feed pellets have rotational symmetry during melting
 - Approximate volume as stacked cylinders:



25 °C 500 °C 670 °C 750 °C 800 °C 900 °C

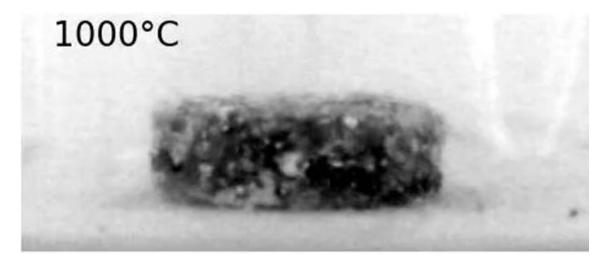
N₂ Amber FET


- 3-inch diameter quartz tube with N₂ hose connected from the top of the furnace.
- 1 g pellet
- On an alumina disc
- Alumina disk sits on insulation with quartz tube resting on insulation around the alumina disk
- Ramp rate: 10 °C/min, room temperature to 1400 °C
- Tested various reducing agents:
 - Standard amber (C),
 - High amber (C3),
 - Boron Nitride (BN),
 - Silica Carbide (SiC)
 - Vanadium Diboride (VB₂)



FET Results

- Expansion volume (V) is divided by initial (V_o)
- Foam reduction of 43 % with Silicon Carbide (0.45) replacing carbon as a reductant



FET Test Videos

Carbon-reduced Amber Batch

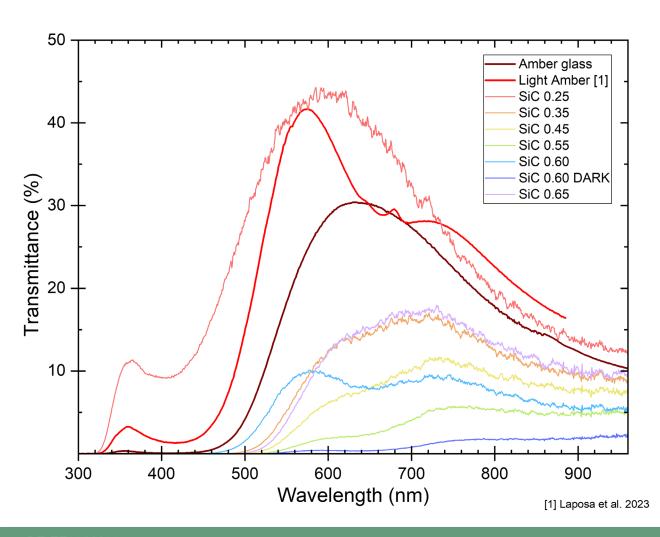
974°C

SiC (0.45) Reduced Amber Batch

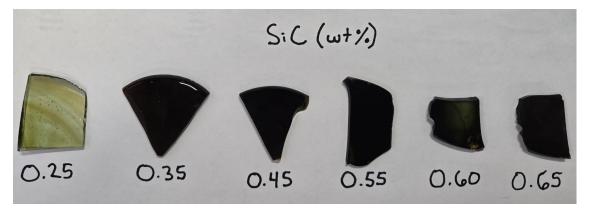
Silicon Carbide

Silicon Carbide (SiC)

- "Refractory" compound (~2700 °C melting point)
- Protective oxidation starting at 600 °C⁹:
 - $2SiC + 3O_2 \rightarrow SiO_2 + 2CO$
- 2 micron powder used in tests

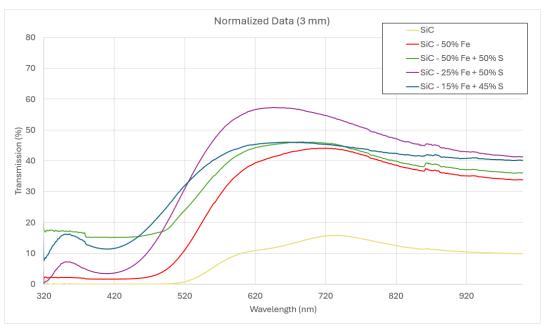

	SiC .25	SiC .35	SiC .45	SiC .55	SiC .60	SiC .65	Std Amber
Silica	69.71	69.56	69.41	69.41	69.41	69.41	70.09
Limestone	22.39	22.39	22.39	22.39	22.39	22.39	22.39
Soda Ash	20.57	20.57	20.57	20.57	20.57	20.57	20.57
Nepheline	4.88	4.88	4.88	4.88	4.88	4.88	4.88
Saltcake	0.41	0.41	0.41	0.41	0.41	0.41	0.41
Iron Scale	0.37	0.37	0.37	0.37	0.37	0.37	0.37
SiC	0.25	0.35	0.45	0.55	0.60	0.65	0.00
Carbon	0.00	0.00	0.00	0.00	0.00	0.00	0.21
Total	118.58	118.53	118.48	118.58	118.63	118.68	118.92

9. Roy, et al. Rev.Adv. Mater. Sci. 38 (2014) 29-39

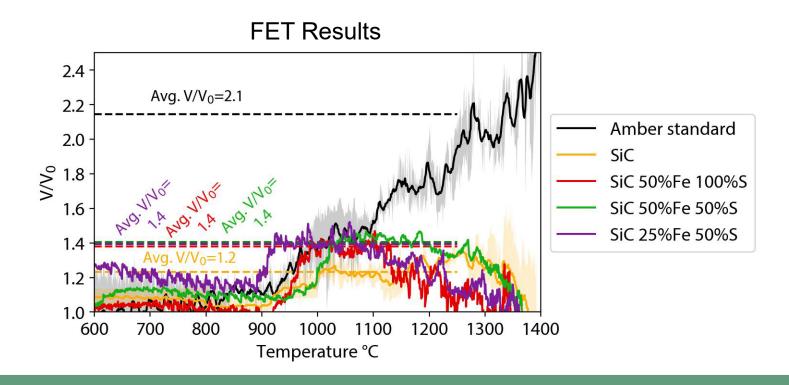


UV-Vis of Silicon Carbide Glasses

- 200 g samples, melted in air
- SiC0.25 is the only glass that was lighter than typical amber glass¹
- Strong reduction potential of the SiC powder



Reduce Iron and Sulfur to Correcting UV Absorbance


- 200 g samples melted under air
- Reduction of Fe₂O₃ and Na₂SO₄ to dilute amber chromophore
- > 50% Iron sample in range of industry spec (18-24% transmission at 550 nm)

SiC0.45 with Reduced Iron and Sulfur

- ➤ Reduced iron and sulfur does not appear to further reduce foaming but still has a 33.3% reduction compared to standard amber
- > Change in foaming onset temperature, which can be beneficial

Future Tests

- Continuation "refractory reducing agents":
 - Testing in CT-HTMOS
 - Solid-state NMR spectroscopy to understand chemical reaction of SiC
 - Affects of particle size, balance of amber coloring agents
- Alternative pathways to amber without foaming:
 - Evaluate redox state starting raw materials (pyrite, slag, etc.)
 - Oxidized amber chemistries

DE-EE0011193 20

In conclusion

- Carbon's reducing power is subject to process conditions
- Silicon Carbide (SiC) has shown to reduce foaming in amber glass by feed expansion test (FET) by up to 43%.
- Suspect due to a different reaction temperature for SiC vs. C with early glass melt
- Reached amber color spec with SiC and less iron and sulfur.

DE-EE0011193 21

Acknowledgements

- ► The authors gratefully acknowledge the financial support of DOE for this work (DE-EE0011193).
- ► The Pacific Northwest National Laboratory is operated for the Department of Energy by Battelle Memorial Institute under contract DE AC05 76RL0 1830.
- ► The authors would like to thank Jess Rigby, Jose Marcial, Derek Cutforth, Jaime George, Jesse Westman, Megan Miller and Will Eaton for their support and discussions.

DE-EE0011193 22

Scott Cooper CelSian

Katelyn Kirchner CelSian

Jesse Lang

Eric Muskovin CelSian

Jonathan Blevins TECO