

Nano-Tec™ Ceramic Welding Materials

-Material Development

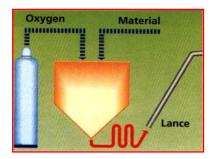
-Lab Testing

-Field Trials

Example Exothermic Reaction & Materials Used

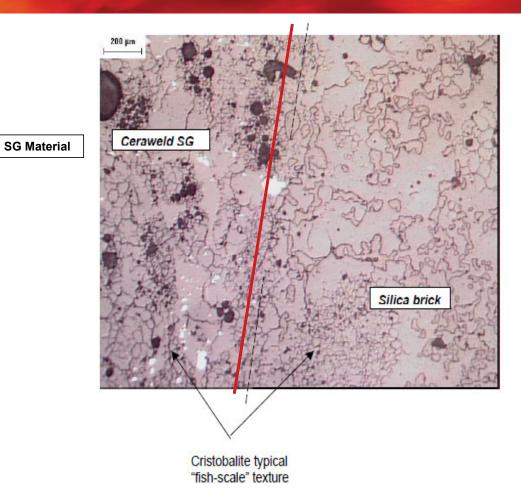
$$Si + O_2 = SiO_2 \implies \sim 910 \text{ kJ/mole} (862 \text{ BTU/mole})$$

$$4AI + 3O_2 = 2AI_2O_3 \implies \sim 1675 \text{ kJ/mole (1,590 BTU/mole)}$$


Materials Used in Ceramic Welding Process:

- Varies with type of substrate:
 - AZS

ZIRCON


• SILICA

- SUPER DUTY ALUMINA
- FUSED SILICA
- FUSED ALUMINA
- Materials are matched to the parent refractory
- The selection of equipment can affect weld quality.

Substrate & Weld Mass Microstructure

Introducing: Nano-Tec™

Nano-Tec™

Fosbel's Innovation to Providing Higher Yield Ceramic Welding Materials

The Welding Process

0.002s: The time it takes a particle to travel from the lance to the wall

During this time period the following has to occur:

- Vaporize the metallic fuel
- Ignite the metallic vapor.
- Transfer the energy
- Melt / soften the particles before reaching the surface.

Developing Nano-Tec™ Materials

Objective:

- Maximum the energy extracted from metallics.
- Balance the energy generation with absorption.
- Minimize partially oxidized metallics.
- Maximize yield.

Developing Nano-Tec™ Materials

Results:

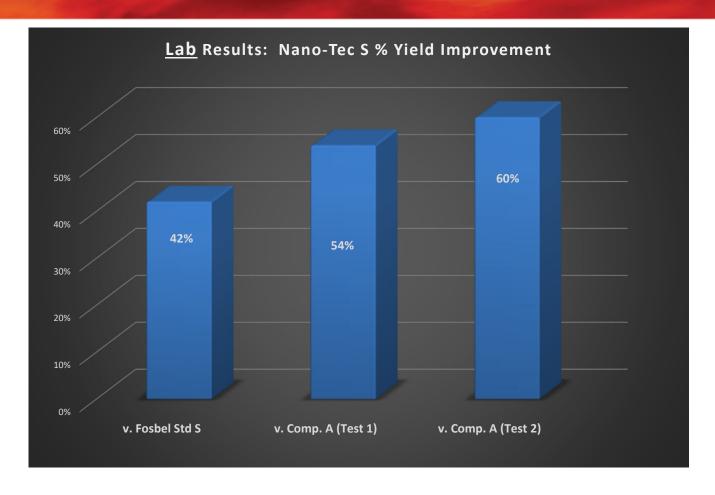
Maximize the energy extracted from metallics.

- Average particle size reduced by 45%
- Surface area per unit mass increased 80%

Balance the energy generation with absorption.

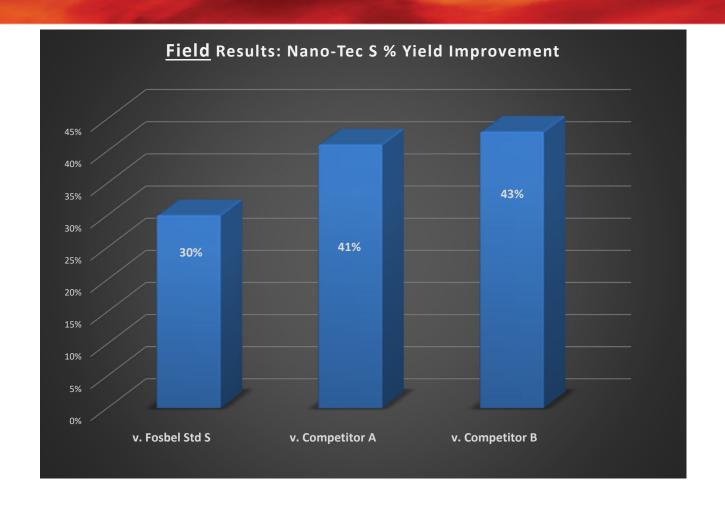
- Surface area of aggregates decreased 20%
- Fuel/Ceramic surface area ratio increased 120%

Minimize partially oxidized metallics.


Combustion efficiency increased by 65%

Maximize yield.

Yield increased 15-18%



Lab Results for Nano-Tec™ S and Competitor Products (Coke)

Field Results for Nano-Tec™ S and Competitor Products (Coke)

Innovation for the Glass Industry

Nano-Tec™ SG and Nano-Tec™ SGS

Introducing Nano-Tec™ Welding Materials

Fosbel Nano-Tec™ materials for the glass industry

- Silica (SG)
- Fused Silica (SGS)

Nano-Tec™ Benefits v. Standard Products

Improved Yield

- Lower rebound
- Higher yield
- Reduces contamination risk

Improved Physical/Chemical Properties

- Higher density
- Lower permeability
- Greater abrasion resistance

Improved Safety

• 9 time less inhalable and 4 times less respirable sized crystalline silica particles

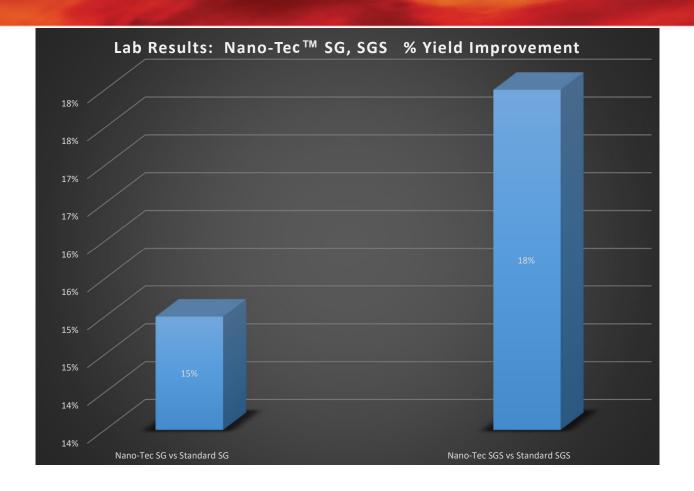
Improved Service Life

Physical/Chemical properties allow for performance improvements

Lab Testing: Ceramic Welds

Open / Closed Weld Mass

Nano-Tec™ closed system weld mass


Yield Results for Nano-Tec™ Ceramic Welds

Results:

- Nano-Tec[™] SG/SGS exhibited 15-18% greater yield.
- Yield improvements reduced time on site 30%.

Lab Yield Results for Nano-Tec™

Nano-Tec™ SG & SGS Conclusions

- Service life objectives influence system (open vs closed)
 - Nano-Tec™ materials offer service life and operational efficiencies
 - Physical properties
 - Yield enhancement
 - Lab and beta site case study in Southeast Asia confirmed efficiencies
 - <u>15%-18% lab</u>
 - 30% time saving at site
- Economics
 - 30% time savings
 - Less ceramic welding material
 - Less labor to carry out SOW

Innovation for the Glass Industry

Customer Controlled Field Trial Fosbel SGS2 vs Nano-Tec™ SGS

Customer Controlled Field Trial

A customer conducted their own trial to compare the performance the Fosbel SGS2 material to the Fosbel Nano-Tec SGS material with respect to weld life and cost of application in an operational container glass tank.

Trial of Nano-Tec™ SGS

General Furnace Conditions

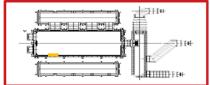
Age: 9 Years

Type: Conventional Cross-Fired w/ OEAS

Fuel: Natural Gas

Trial Repair Areas: Port 1 Right and Left

Right Side Port 1 Nano-Tec™ SGS April 1st 2020

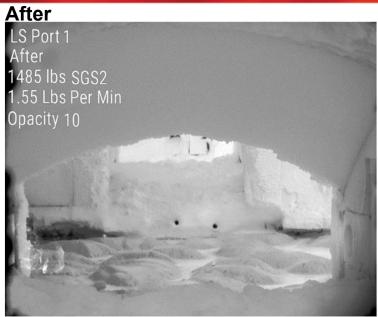

Before

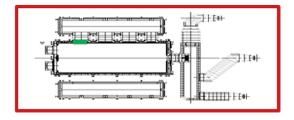
2,035 Lbs. Nano-Tec™ SGS 1.55 Lbs. Per Minute

After

Right Side Port 1 Nano-Tec™ SGS

4 Months Service




11 Months Service

Left Side Port 1 April 1st 2020

1,485 Lbs. SGS21.55 Lbs. Per Minute

Left Side Port 1 SGS2

August 28,2020

4 Months Service

March 16, 2021, SGS2

11 Months Service

Field Conclusions

- > Standard SGS2 on LHS P#1 had worn off after almost one year in operation
- Nano-Tech™ SGS weld mass had <u>partially worn away</u>, <u>but is still present</u>.
- ➤ Nano-Tech™ SGS weld material remains after 11 months service

March 16, 2021, SGS2, P1 LHS – Worn off

March 16, 2021 NT SGS P1 RHS

Nano-Tec™ Savings

Savings done Port 1 / RHS

Estimated: 30 hours / 2500 lbs. SGS2

Actual: 22 hours / 2035 lbs. Nano-Tec™ SGS

Material: 26.6% directly saved

Labor: 18.6% directly saved

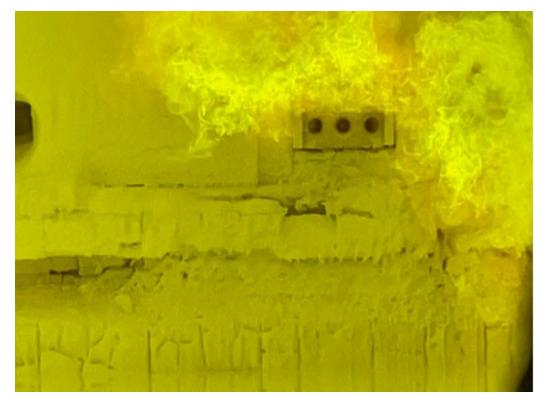
Longer repair life expectation (indirect

savings)

Conclusions

Utilizing Nano-Tec™ over SGS2 Material

- Less rebound resulting in...
 - Less risk of contamination / inclusions
 - Lower particulate / opacity during welding
- Longer repair life resulting in...
 - o Significantly decreased hot repair spending
 - Less frequent ceramic welding repairs less risk



Ceramic Welding

Next Generation Welding Powder Glass Contact AZS Weld

Project Omega – Field Trial, Metal Line

The Day of Weld Application

Project Omega – Field Trial, Metal Line (8 Months)

FB-71 Chemistry

Objective:

■ Increase the zirconia content to improve glass resistance.

Omega Weld Chemistries

4-Dec-24	Sefpro CS-3	FB-69	FB-71
Al_2O_3	49	49.5	39.2
ZrO ₂	34	33.4	39.4
SiO ₂	15	15.7	17.7
MgO	-	-	1.6
Density (g/cc)	3.4	3.2	3.3
Porosity	<3	8.8	4.6

